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Abstract

Active inference 1s a modeling framework in computational neu-
roscience build upon the assumption that cognitive systems encode
a hierarchical generative model of the world and act as to minimize
their prediction errors. Existing implementations of active inference,
however, are poorly comparable to alternative models and fall short
of meeting reproducibility standards. Moreover, these simulations are
usually limited to toy environments, which casts a shadow of doubt on
whether active inference scales up to complex cognitive systems in the
wild. The goal of the project is to build a universal active inference
agent based on recent advances in scaling up variational inference by
coupling it with deep neural networks. The active inference agent will
be evaluated against state-of-the-art reinforcement-learning algorithms
in several Atari environments (a received benchmark in machine learn-

ing).

Goals of the project

e To implement a framework for conducting experiments with
active inference agents,

e To investigate whether active inference agents can efficiently
operate in complex environments,

¢ To investigate whether employing a neural network makes the
agent scale better with increasing complexity of the environ-
ment,

e To investigate whether active inference agent can efficiently
explore complex environments.

Prior work

Active inference and the free energy principle

Active inference 1s a modeling framework 1in computational neu-
roscience build upon the assumption of the free energy principle
(FEP). According to FEP, cognitive systems encode a hierarchi-
cal generative model of the world and act as to minimize their
prediction errors. Perception, learning and action can be cast
as Bayesian variational inference, 1.e. gradient descent on free
energy, which imposes an upper bound on prediction error [2].
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Figure 1: A Bayesian network formulation of of active inference. Nodes
represent four sets of states (action, sensory, external, internal), while arrows
represent the dependencies between them. Source: Wikipedia, CC BY-SA
3.0.

Problems with existing implementations of active
inference

e They fall short of meeting reproducibility standards
e They fail to generate comparable, quantitative predictions

e Active inference was only evaluated on toy problems such as
visual perception and saccadic eye movements. On the other
hand, FEP claims to pertain cognition in general

e They were only used to model biological cognition, leaving
unaddressed the 1ssue of applying active inference to solving
real-world engineering problems given industrial constraints

From reinforcement learning to active inference

e Reinforcement learning 1s the standard approach to sensori-
motor control problems.

e In reinforcement learning we search for a policy (describing
what to do 1n a given state) that maximizes expected reward.

e Equivalently, a reinforcement learning problem can be posed
as an inference problem, 1.e. computing the posterior over
policies given a prior and received rewards.

e Therefore, active inference can be evaluated on reinforcement
learning benchmarks and compared against a growing body of
deep reinforcement learning algorithms.

Disclaimer: active inference 1s an unsupervised learning
method, 1.e. it does optimize directly for an external reward,
but for surprise minimization.

From deep generative modeling to active inference

e Active inference framework i1s based on variational approxi-
mation of Bayesian inference, 1.e. posing it as tractable opti-
mization of the parameters of a given probability distribution.

e Variational methods were recently employed and greatly ad-
vanced 1n the context of deep learning.

e Most of these advancements come down to optimizing the pa-
rameters of a (deep) neural network parametrizing a distribu-
tion rather than optimizing the parameters of a distribution
directly.

Key questions

Can active inference scale up to solve non-trivial
problems in complex, real-world environments?

Active inference employs a variational approximation scheme to
compute an intractable posterior. While the problem under vari-
ational assumptions 1s definitely simpler, 1s 1s still an open ques-
tion whether active inference converges in real environments in
a reasonable time.

Does employing a deep neural network influence
its performance?

[4] combines recent advances 1n variational inference with active
inference framework into what he calls deep active inference.
A proof-of-concept implementation of deep active inference on
mountain car problem 1s available. No attempts were made at
solving more complex problems.

Is it comparable to state-of-the-art (deep) rein-
forcement learning methods?

Reinforcement learning 1s a fast-moving field [3]. It is also fre-
quently criticizes for decoupling from constraints that biologi-
cal agents face: intrinsic motivation, curiosity and lack of single
well-defined scalar reward. Gym environments, established ap-
proach to comparing different agents, can be also employed for
evaluating active inference agents.

Does it outperform reinforcement learning when
it comes to exploration (maximizing epistemic
value)?

Reinforcement learning approaches have well-known difficul-
ties when 1t comes to taking novel paths and dealing with uncer-
tainty. The free energy functional, on the other hand, naturally
admits decomposition into extrinsic and epistemic value. Thus
an active inference agent should be able to (Bayes-)optimally
trade off exploration and exploitation.

Methods

Gym 1s a framework for evaluating reinforcement learning
agents. It provides a diverse set of environments, each with a
well-defined API [1].

We will implement a general-purpose (deep) active infer-
ence agent in PyTorch framework and provide it with a Gym-
compatible API.

Then we will train and evaluate the agent on a set of environ-
ments, such as Mountain Car or Space Invaders. Various hyper-
parameters (including the use of neural network to parametrize
the distribution) will be explored. Performance of shallow active
inference deep active inference, and deep reinforcement learning
will be compared on exploration-hungry problems.

Figure 2: Atari games, such as Space Invaders pictured above, are the E. coli
of reinforcement learning.

Conclusions

There are two possible outcomes:
e (Deep) active inference will prove scalable, or
e It won’t.

In the first case, the profit will be twofold: an unsupervised al-
ternative to reinforcement learning will be delineated and a case
will be made 1n favor of FEP as a tractable formal model of cog-
nition.

If active inference fails to scale up, the endeavor will still be of
value for the cognitive science community. A case will be made
for narrowing the explanatory scope of FEP.

References

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym. CoRR, abs/1606.01540, 2016.

[2] Karl Friston, T. FitzGerald, F. Rigoli, P. Schwartenbeck, and

G. Pezzulo. Active inference: A process theory. Neural com-
putation, 2017.

[3] Yuxi Li. Deep reinforcement learning: An overview. CoRR,
abs/1701.07274, 2017.

[4] Ka1 Ueltzhotter. Deep active interence. Biological Cyber-
netics, 2018.



