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Abstract

In this thesis, I explore a novel approach to achieving emergent compositional communication
in multi-agent systems. I propose a training regime implementing template transfer, the idea of
carrying over learned biases across contexts. In the presented method method, a sender–receiver
pair is first trained with a disentangled loss functions, and then the receiver is transferred to
train a new sender with a standard loss. Unlike other methods (e.g. the obverter algorithm),
template transfer approach does not require imposing inductive biases on the architecture
of the agents. I experimentally show the emergence of compositional communication using
topographical similarity, zero-shot generalization and context independence as evaluation
metrics. The presented approach is connected to an important line of work in semiotics and
developmental psycholinguistics: it supports a conjecture that compositional communication
is scaffolded on simpler communication protocols.
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Chapter 1

Introduction

Language-like communication protocols can emerge in games that require the agents to share
information and coordinate behaviour (Foerster et al., 2016; Lazaridou et al., 2016; Jaques
et al., 2018). One important feature of human languages and some animal communication
systems is compositionality – there are complex signals constructed through the combination
of signals. Compositionality is considered a key feature of general intelligence because it
facilitates generalization (adaptability to novel situations) and productivity (an infinite number
of meanings can be created using a finite set of primitives) (Lake et al., 2016). However, recent
work on emergent languages in artificial intelligence shows that compositionality requires
strong inductive biases to be imposed on the agents (Kottur et al., 2017).

Contribution The contribution of this thesis is its demonstration that communication
protocols exhibiting compositionality can emerge via adaptation of pre-existing, simpler
non-compositional protocols to a new context. This procedure is an instance of template
transfer (Barrett and Skyrms, 2017). Our model implements the idea of template transfer
by sharing agents across games of varying complexity. We decompose learning compositional
communication into three phases: (i) learning a visual classifier, (ii) learning non-compositional
communication protocols, and (iii) learning a compositional communication protocol. This
decomposition closely follows distinctions established in semiotics (the hierarchy of (i) icons,
(ii) indices, and (iii) symbols) and is more plausible in the light of human language development
than other approaches. Crucially, the biases learned in simple games in phase (ii) are sufficient
to incentivize a compositional communication protocol to emerge in phase (iii). We compare
the template transfer approach with other method of achieving compositionality—the obverter
algorithm (Batali, 1998; Choi et al., 2018)—on three different metrics: zero-shot generalization,
context independence and topographical similarity. The results demonstrate that the ability
to communicate compositionality can emerge in a model less cognitively demanding than the
obverter approach.

The structure of the thesis In chapter 1, I provide some background knowledge necessary
to pose the problem of accounting for the emergence of compositional communication. This
includes the formal model of (generalized) Lewis signaling games (section 2.1), the hierarchy
of forms of communication as developed in Peircean semiotics (section 2.2) and the notion
of compositionality itself (section 2.3). In chapter 3, I present a review of literature directly
relevant for the studied approach. In chapter 4, I describe the task (including deriving its loss
functions) and the setup used in experiments. Then I describe the particular implementation
of template transfer considered in this thesis. In chapter 5, I describe metrics used in
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the experiments, present the results of template transfer approach to the emergence of
compositionality and compare them with some baseline approaches. In chapter 6, I develop
evolutionary and developmental motivation behind my approach and argue it to be less
cognitively demanding that other approaches. In chapter 7, I conclude by discussing some of
the limitations of the present study and possible future work.
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Chapter 2

Theoretical background

The goal of this chapter is to lay down the background necessary to pose the problem of
accounting for the emergence of compositional communication. In the thesis, I assume a
broadly pragmatic or game-theoretic approach to language evolution: communication emerges
as a tool for guiding joint action or for enabling coordination in a multi-agent system trained
with a joint objective. There are also more syntactically or semantically oriented approaches,
which focus more on the development of lexicons and grammars in single agents. For a broader
review, see (Gong et al., 2014).

The structure of the chapter is as follows. First, in section 2.1 I explicate what I mean by
communication in terms of a simple formal model — Lewis signaling games — and consider
the problem of the emergence of a simple communication protocol from scratch in a guessing
game, an instance of Lewis signaling games. Next, I introduce a concept fundamental for the
thesis – template transfer – and sketch how it accounts for the emergence of complex semiotic
phenomena. Then, in section 2.2 I introduce another theoretical framework for tackling the
problem of the emergence of complex communication out of simple communication – Peircean
semiotics – and consider its modern extensions in cognitive anthropology and developmental
psychology of language. Finally, in section 2.3 I introduce the notion of compositionality and
its significance in cognitive science and artificial intelligence. I revisit some of the concepts
from this chapter when discussing the implications of the empirical results of the thesis in
chapter 6.

2.1. Lewis signaling games

Signaling transmits information, but it does far more than this. To see this we
need to move further than the simple signaling games with one sender and one
receiver. Signals operate in networks of senders and receivers at all levels of life.
Information is transmitted, but it is also processed in various ways. Among other
things, that is how we think—just signals running around a very complicated sig-
naling network. Very simple signaling systems should be able to learn to implement
very simple information processing tasks by very simple means, and indeed they can.

– Brian Skyrms

Lewis signaling games are a simple game-theoretic model of communication. The study
of signaling games was pioneered by ?, who analyzed the emergence of social conventions
in game-theoretic terms. While Lewis’ motivation was philosophical (he was interested in
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explicating and defending the neopositivist notion of truth by convention), a number of
phenomena can be modeled as signaling games, including the labor market, sexual selection
and animal communication (Skyrms, 2010).

2.1.1. Definitions

A Lewis signaling game demands a sender and a receiver to invent a communication protocol
so that the receiver can act based on information only available to the sender1 and maximize
reward for both of them. More formally, a Lewis signaling game consists of

1. a world, consisting of X (a set of states x ∈ X) and Y (a set of available actions y ∈ Y ),
2. a set of available messages M ,
3. a sender s : X →M (a mapping from a world state to a message),
4. a receiver r :M → Y (a mapping from a message to an action), and
5. a loss function L : X × Y → N assigning each (x, y) pair a scalar reward/penalty l ∈ N.

Let us focus on a special case known as a guessing game in the language evolution literature
(Cangelosi, 2001) (though not always formalized as a Lewis signaling game). We assume that
the optimal action depends on the state of the world available only for the sender. In such
a case, the sender is incentivized to transmit the information about the state to help the
receiver make an informed decision. Furthermore, let us assume X and Y are equinumerous
sets and are objects are mapped to correct actions via some bijective function f : X → Y .
Now let L be 0 if r(s(x(i))) = f(x(i)) = y(i) and some positive constant l otherwise. The goal
of the guessing game is to find mappings s and r that recover f by minimizing L. A guessing
game is solved when L(x(i), y(i)) = 0 for all i (equivalently, when s ◦ r = f). Intuitively, this
reflects the following situation: the sender sees an object x(i) (one out of several available
objects) and must communicate to the receiver which objects it sees so the receiver can to act
to successfully indicate it among a set of distractors. If the receiver successfully indicates all
objects in X based on sender’s messages, the game is solved.

Let a communication protocol (s, r) be a specific solution a particular guessing game.2 For
each guessing game there are numerous possible communication protocols. The choice of a
particular communication protocol is a social convention that the agents implicitly agree upon
(as deviating from the protocol would increase the penalty for both of the agents).

2.1.2. S-vector semantics

A non-trivial semantics can be defined for a communication protocol, lending support to
claims that the messages do indeed mean something and the emergence of meaning can be
accounted for in terms of playing Lewis signaling games. More formally, a semantics for a given
communication protocol is a function [[·]] : M → M that assigns a unique, evaluable formal
object [[m]] ∈M (a meaning) to each message m ∈M such that [[m]] uniquely characterizes the
content of the message m, e.g. determines in what circumstances m is to be sent (descriptive
content) or what should be done upon receiving it (imperative content). Let us sketch an
informal argument that for each communication protocol (s, r) there exists a semantics [[·]].

Let us first assume that the sender and the receiver are stochastic, i.e. sθ and rψ are proba-
bility mass functions (parametrized by θ and ψ, respectively) defining categorical distributions

1There are more general formulations with information about the world available for both the sender and
the receiver. I consider the special case where only the sender has information about the world because this is
the setup used in my experiments.

2A communication protocol is equivalent to a signaling system in Lewis’ terminology.
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over messages and actions conditioned on states and messages, respectively:

m ∼ sθ(m|x), (2.1)

y ∼ rψ(y|m). (2.2)

Both distributions can be seen as policies parametrized by θ and ψ, respectively. Let us
assume θ and ψ are initialized to parametrize uniform distributions. Solving a guessing game
corresponds to the optimization problem

argmin
θ,ψ

∑
x∈X, y∈Y

Em∼sθ(m|x(i)) Eŷ∼rψ(ŷ|m) L(y(i), ŷ). (2.3)

Then, the emergence of meaning corresponds to the symmetry breaking of θ and ψ in the
course of optimization: each message starts being sent in response to a progressively more
restricted subset of object. The meaning of a message m in a guessing game can be defined in
terms of how it affects rψ(y|m), i.e. a change in rψ(y) after receiving m gives rise to imperative
content. The information conveyed by a message to the receiver is simply the point-wise
mutual information between the message and the action, i.e. log

rψ(y|m)
rψ(y)

. The information
content of a message is a vector of point-wise mutual informations between the message and
each of the actions available for the receiver. That is, for a game with n available actions for
the receiver (y(1), y(2), . . . , y(n)) the imperative meaning of a message m is

[[m]]ψ =
[
log rψ(y

(1))|m)

rψ(y(1))
, log rψ(y

(2))|m)

rψ(y(2))
, . . . , log rψ(y

(n))|m)

rψ(y(n))

]
. (2.4)

Such a vector of log probability ratios is known as an s-vector. Intuitively, imperative
content of messages describes how acquiring the message affects the behavior of the receiver.
Note, however, that information content (a vector of log probability ratios) is a richer object
than the quantity of information conveyed in a message (a scalar). How the message changes the
distributions is more than just how much it changes the distribution. Imperative information
content has a normative aspect as it describes the behavior expected of the receiver upon
receiving the message.

The idea that the s-vector is a good candidate for a meaning was first proposed by Skyrms
(2010) and has recently been defended by Isaac (2019) under the name of s-vector semantics.
This approach is theoretically interesting because it has very few theoretical commitments:
it only assumes the axioms of probability and the existence of a sender and a receiver. It
also explicitly ties the meaning of a message to its use and how the meaning evolves, as well
as to (Bayesian) inference involved in meaning comprehension and informed action. From
a computational point of view, taking the set of available meanings to be a vector space is
very in line with distributional approaches to semantics that underlie contemporary natural
language processing (Mikolov et al., 2013).

2.1.3. Template transfer and generalized signaling games

Barrett and Skyrms (2017) recently developed a theoretical framework of generalized Lewis
signaling games for modeling how Lewis signaling games can be composed and transferred
to new settings to yield more powerful Lewis signaling games. These generalizations can
be understood in terms of ritualization: the process of exploiting pre-existing patterns of
behavior of some agent a1 by some other agent a2 for the benefit of a2. This notion gives rise
to following classes of generalized signaling games:
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1. a cue–reading game is where a1 = sθ and a2 = rψ, i.e. θ is approximately fixed and the
receiver takes advantage of the policy of the sender,

2. a sensory–manipulation game is where a1 = rψ and a2 = sθ, i.e. ψ is approximately
fixed and the sender takes advantage of the policy of the receiver,

3. a (proper) signaling game is where the sender and receiver both take advantage of each
other’s dispositions.

Barrett and Skyrms (2017) offer the following examples. For cue–reading, consider cross-
species signaling networks such as hornbills receiving, understanding and exploiting alarm
calls of Diana monkeys (Rainey et al., 2004). (The two species have common predators.) For
an example of sensory–manipulation, consider mating rituals of frogs from the Physalaemus
pustulosus species group. Here males of several species of Physalaemus pustulosus exploit the
sensitivity of females for certain sounds that is evolutionary antecedent (pre-existing) and
shared between Physalaemus pustulosus species (Ryan and Rand, 1993).

Moreover, “one might think of the ritualization of decisions as the glue that binds agents
to form simple games from their basic decisions, then increasingly complex games from simple
game” (Barrett and Skyrms, 2017). In case when the policy of a1 evolved as a solution to a
previous signaling game g0 between a1 and some a0, the new signaling game g1 with a1 and
a2 can be seen as evolving out of g0. This appropriation of a policy of a1 from g0 to a new
game g1 is known as template transfer. The policy of a2 can then be seen as a translating the
inputs from the g1 to inputs from g0 or emulating g0. This is why the transferred policy of a1
might be successful in a context g1 other than the one the policy initially evolved for (i.e. g0).

A related phenomenon, modular composition, occurs when a the output (i.e. receiver’s
action) of one game g0 is the (sender’s) input to a new game g1, thus forming a composite
game. For instance, an initial game g0 with agents s0, r0 can be interpreted as itself being a
policy of an agent s1 : x 7→ r0(s0(x)) who can then play with a new receiver r1 thus forming
a composite game g1 : x 7→ r1(r0(s0(x))). This instance of modular composition is known
as polymerization and boils down to agents forming a signaling chain. Modular composition
may also involve games with several senders and/or receivers and networks with branched
flow of messages. Barrett and Skyrms (2017) provide an example of NAND games (i.e. games
with two senders communicating with one receiver to jointly emulate a NAND gate) being
composed to form an OR game (or, by extension, emulating an arbitrary Boolean function).

While transferred policies and solutions to composite games could in principle have evolved
from scratch, template transfer and modular composition lead to orders of magnitude faster
convergence. Moreover, they seem to implement a general principle of modular reuse in nature.
It seems that a great deal of cognitive, social and semiotic phenomena can emerge through
recursive modular composition or iterative template transfer from simpler to more complex
games. This includes logical inference (Barrett and Skyrms, 2017), knowledge sharing in a
community (Barrett et al., 2019) and functional specialization of agents (Barrett et al., 2018).

2.2. Hierarchies of communication protocols

Symbols grow. They come into being by development out of other signs.

– Charles Sanders Peirce

Peirce (1998) famously proposed a hierarchy of forms of signification:

1. Iconic signs refer to their objects by virtue of physical similarity between a sign and an
object as perceived by an agent,
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2. Indexical signs refer to their objects by virtue of causal, spatial or temporal association
between a sign and an object as recognized by an agent,

3. Symbolic signs refer to their objects by virtue of a social convention or tacit agreement
familiar to an agent.

Importantly, being an icon, an index or a symbol is not an intrinsic property of a sign
but a feature relative to an agent interpreting the sign. This follows from sign being a triadic
relation between a sign vehicle, an object and an agent (an interpretant in Peirce’s terminology).
Certain sign vehicles may be purely iconic for one agent agent while symbolic for another.

Deacon (1998) developed a cognitive anthropological interpretation of Peirce’s semiotics
and argued the linear order over three kinds of signs to be interpreted both in terms of
ontogenetic and phylogenetic precedence as well as evolutionary and developmental functional
dependence. Regarding precedence, the hierarchy reflects an ascending order of cognitive
competence required to interpret respective signs. Iconic reference requires modest cognitive
capacities to be recognized (perception fine-grained enough to recognize similarity, but without
the requirement for memory) while indexical reference requires a form of associative learning.
Finally, symbolic reference requires reasoning according to rules defined by a whole system of
symbols (Peirce, 1998).3 Empirically, sensitivity to iconic reference can be found arbitrary
early in phylogeny and most animal communication systems are indexical. Symbolic reference
is usually assumed to be unique to human languages (Deacon, 1998).

There is, however, another view on Peirce’s hierarchy according to which the order should be
taken not as (evolutionary, developmental or cognitive) precedence, but as a part-of relationship.
According to Deacon, “reference is hierarchical in nature; more complex forms of reference
are built up from simpler forms” (Deacon, 1998, p. 73). This is because the competence
to interpret symbolically assumes competence to interpret indexically (and by consequence,
iconically). In Peirce’s own terms, higher-order forms of reference can be decomposed into
lower order forms in the sense that a lower order form of reference (e.g. an icon) serves as an
interpretant to a higher order form (e.g. an index).

Peirce’s account of precedence and dependence of different forms of reference is influential
both in evolutionary research on the origins of language as well as in language development
research. It is frequently assumed as a target evolutionary pathway in computational models
of the evolution of language (Cangelosi, 2001; Grouchy et al., 2016). Regarding development,
the semiotic hierarchy of signs can be turned into typology of constraints language imposes
on interacting agents. These constraints emerge in a structured social environment and and
depend on each other (in a sense that pre-existing constraints unleash novel forms of control)
as part of “a multithread complex process that at the same time maintains grounding of the
system in which they are embedded and in which iconic and indexical grounding is progressively
augmented or replaced by symbol-symbol relations” (Rączaszek-Leonardi et al., 2018, p. 67).

The take-home message from Peirce and Deacon crucial for the approach presented in
this thesis is that complex (symbolic or only compositional) communication protocols do not
(usually) emerge from scratch. Instead, pre-existing, simpler communication protocols can be
(and frequently are) employed as a scaffolding for the evolution of complex communication
protocols.

3This is because symbolic reference between a symbol S and an object O is determined by a relationship S
has with other symbols S′, S′′ . . ., not just the relationship between S and O. Relationships between symbols
may involve rules for composing them, e.g. certain co-occurrences are allowable and others forbidden.
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2.3. Compositionality

It is astonishing what language can do. With a few syllables it can express an
incalculable number of thoughts, so that even a thought grasped by a human being
for the very first time can be put into a form of words which will be understood by
someone to whom the thought is entirely new.

– Gottlob Frege

Compositionality is a property of certain communication protocols that the meaning of a
complex expression is fully determined by its structure and the meanings of its constituents.
More formally, consider a protocol consisting of a vocabulary V = {v1, v2, . . . , vn} and a binary
syntactic composition operator ◦. Let us assume that a message has the form m = vi ◦ vj .4
Once again, let a semantics for a communication protocol be a function [[·]] : m 7→ [[m]] that
assigns a unique, evaluable formal object [[m]] to each message m such that [[m]] uniquely
characterizes the content of that message. A semantics is compositional if, for every vi, vj it
holds that

[[vi ◦ vj ]] = f([[vi]], [[vj ]]) (2.5)

with f being a semantic composition function. Saying that a communication protocol is
compositional is actually a short-cut for saying that agents use a compositional semantics for
that protocol.

Compositionality is considered to be an essential feature of human languages Hockett
(1960). Moreover, compositionality is assumed to be an important building block of general
intelligence by being linked to productivity, systematicy and generalization. Productivty is
the property that an unbounded number of meanings can be created using a finite number of
primitive elements.5 This property is fundamental to several theories of universal grammar
developed the generative approach in linguistics (Chomsky, 2015). Systematicy is the presence
of definite and predictable patterns in the communication protocol which could potentially
improve the learnability of the protocol. Systematicy can also be understood as a symmetry of
a communication protocol with respect to composition (e.g. understanding the meaning of “Eve
loves Marry” entails understanding the meaning of “Mary loves Eve”). Finally, generalization is
the ability adapt to novel contexts. As such, it is central to machine learning and productivity
and systematicy are frequently seen simply as means of improving generalization in some
settings. This in particular involves compositional or combinatorial (zero-shot) generalization,
i.e. adaptability to novel combinations of known elements (Lake, 2019; Hill et al., 2019).

Learning compositional representations is a long-standing challenge in artificial intelligence.
Fodor and Pylyshyn (1988) have famously argued that a neural network must explicitly
represent a compositional semantics in order understand a compositional communication
protocol, because association (implemented as an affine transformation in a layer of a neural
network) is not a structure-sensitive relation and structured representations could not be
encoded by association.6 While Fodor and Pylyshyn’s systematicy challenge was subsequently
widely criticised and afforded book-length treatments (e.g. (Calvo and Symons, 2014)), a

4These simplifying assumptions reflect the experimental setup described in chapter 4 and linguistically
correspond to (for example) a noun phrase composed of a noun and an adjective. Compositional semantics
relevant for linguistics are recursively defined (i.e. m itself can be composed with some m′) and allow for more
sophisticated operators than ◦ (Partee et al., 1993).

5This assumes a recursively defined semantic composition function f .
6Note that, for similar reasons, s-vector semantics described in section 2.1 also fails to be compositional

because one cannot infer the joint distribution p(vi, vj) from marginal distributions p(vi) and p(vj).
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resurgence in neural network research in 2010s invigorated interest in the problem (Lake
et al., 2016). Modern research assumes compositionality to be a graded notion and studies
the impact of various inductive biases on compositional generalization as a proxy metric for
compositionality of representations (Hill et al., 2019). Literature directly relevant to the
problem of compositionality in emergent communication discussed in the next chapter.
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Chapter 3

Related work

In this chapter, I review recent empirical work on deep neural network-based models of the
emergence of compositionality in signaling games. First, I discuss various mechanisms known
to incentivize compositional communication. Then, within this research tradition, I state the
problem to be solved in the thesis.

Towards deep learning Computational models of signaling games traditionally relied on
either simple reinforcement learning (e.g. Roth-Erev model) (Skyrms, 2010) or evolutionary
optimization (Cangelosi, 2001; Grouchy et al., 2016) for learning the policies of agents sθ and
rψ. With the rise of deep learning (Goodfellow et al., 2016), deep neural networks started
being used to implement policies with parameters optimized via gradient descent implemented
using the backpropagation algorithm (Rumelhart et al., 1986). In a typical setting, learning
boils down to minimizing ∇θ,ψ L(y, rψ(sθ(x)) for L, x and y defined as in chapter 2. The
introduction of more powerful models (in terms of capacity) and more efficient training
regimes (in terms of convergence time) contributed to the emergence of qualitatively novel
phenomena (e.g. counter-factual reasoning (Jaques et al., 2018)) as well as enabled using more
psychologically realistic settings (e.g. presenting the agents with raw visual inputs as opposed
to pre-processed, discrete representations of stimuli (Lazaridou et al., 2018; Bouchacourt and
Baroni, 2018).

Inductive biases for compositional communication Kottur et al. (2017) argue that the
emergence of compositionality requires strong inductive biases to be imposed on communicating
agents. In a guessing game with inputs being objects characterized by color and shape, agents
implemented by a vanilla architecture (i.e. without additional constrains motivated by
compositionality) will most likely end up developing an information-theoretically optimal yet
non-compositional communication protocol — a hash function for the objects — that will
show poor generalization to novel combinations of colors and shapes (Kottur et al., 2017). One
recurring approach to enforce compositionality is placing pressure on agents to use symbols
consistently across varying contexts. To that end, Kottur et al. (2017) and Das et al. (2017)
reset the memory of an agent between producing or receiving subsequent parts of a message,
which helps to obtain a consistent symbol grounding (i.e. each symbol is associated with
a shape irrespective of color or with color irrespective of shape). Resetting the memory
of an agent in the middle of receiving or producing a message can be argued to be an ad
hoc manipulation, however, which is of limited interest to researchers focused on uncovering
biologically plausible mechanisms of compositionality.
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Obverter approach A more psychologically plausible approach is explored by Choi et al.
(2018) and Bogin et al. (2018), who take inspiration from the obverter algorithm (Oliphant and
Batali, 1997; Batali, 1998). The obverter (from the Latin obverto, to turn towards) algorithm
(Batali, 1998; Oliphant and Batali, 1997) is based on the assumption that an agent can use its
own responses to messages to predict other agent’s responses, and thus can iteratively compose
its messages to maximize the probability of the desired response. In a typical game, two agents
aξ and aκ (with policies parametrized by ξ and κ) exchange the roles of the sender and the
receiver. If an agent is the receiver (aξ = rξ), it behaves as in the object naming game. If an
agent is the sender (aξ = sξ), it sends message that would have produced the optimal response
(to the best of aξ’s knowledge) if aξ had received such a message as a receiver. More formally,
aξ sends a message m = argmaxm′ rξ(yc|m′), assuming a correct action yc is known or can
be predicted by aξ. This can be interpreted as agents possessing a theory of mind (Bruner,
1981; Tomasello et al., 2005) or a model for predicting the response of the other agent rκ(y|m)
based on own policy rξ(y|m).

A limitation of the obverter is that it makes strong assumptions about the agents and
task: to be able to use themselves as models of others, the agents must share an identical
architecture and the task must be symmetric (the agents must be able to exchange their
roles). This excludes games with functional specialization of agents. Another problem is the
computational complexity of the decoding procedure. Even assuming greedy decoding, (i.e.
that the sender will compose a message by progressively choosing next symbol mt maximizing
rξ(yc|m1:t)), producing a message requires O(|V |T ) queries to the model of the receiver (where
|V | is vocabulary size and T is maximum message length).

Population-based training A different family of approaches tries to incetivize composi-
tionality by training entire populations of senders and receivers and creating a pressure for
learnability of the communication protocol for new agents. This approach was pioneered
the iterated learning model, which assumed that agents acquire a communication protocol
by being (implicitly or explicitly) taught by the agents from previous generations (Kirby,
2001). The cultural transmission is imperfect, which creates a bias towards protocols that are
both expressive and easy to teach (Brighton, 2002). Iterated learning was found to lead to
compositionality both in computational experiments (Brighton, 2002) as well as in experiments
with human subjects (Kirby et al., 2008). In the machine learning literature, generational
transmission as a mechanism for inducing compositionality was explored by Li and Bowling
(2019) and Cogswell et al. (2019), who simulate the arrival of new language users by periodically
resetting weights of some agents in the population. Their experiments corroborated the effect of
increased compositionality and found it to be complementary with other factors that encourage
compositionality.

Multi-task training Yet another approach, most similar in spirit to ours, was introduced
by De Beule and Bergen (2006). In this work, a population of agents plays a guessing game
in a world populated by events involving agents and patients. There are Ne event predicates
(e.g. kicked) and Np person predicates (e.g. Mary), giving rise to 2NpNe structured topics and
Np+Ne atomic topics. The fraction between the number of structured topics presented to the
agents and the number of atomic topics presented to the agents is known as task complexity.
Task complexity turns out to be a crucial parameter influencing compositionality. For an
intuitive explanation, consider the event “Mary loves Eve”. A sender who has never seen
neither event predicate love nor person predicates Mary and Eve might employ a new word to
communicate this event. However, a sender already knowing the word for Mary might reuse
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it together with new words for novel elements of the event. The experiments conducted by
De Beule and Bergen demonstrate that the incentive to reuse known symbols leads to the
emergence of compositional communication in games with low yet non-zero task complexity,
i.e. when agents communicate mostly about atomic topics but also about structured topics.
Contributing to this line of thinking, we show how a similar effect of reusing parts of a non-
compositional communication protocol in a compositional fashion can emerge when training
with structured topics occurs after (not simultaneously to) training with atomic topics.

Grounded and situated approaches Language grounding, situatedness and embodiment
are emerging trends in recent research in both cognitive science and artificial intelligence
(Pfeifer and Scheier, 1999; Smith and Gasser, 2005; Clark, 2016), posing questions such
as the emergence compositional communication in more psychologically realistic settings.
Interestingly, such settings may yield novel patterns of behavior not appearing in simpler, toy
environments. The departure from pre-processed, symbolic input (e.g. encoding an object
as a one-hot vector) in favor of raw visual input (i.e. tensors of RGB pixels) requires the
sender to deal with entangled input and decompose it into relevant factors of variation (e.g.
shape and color) on its own, yielding less compositional communication protocols, on average
(Lazaridou et al., 2018). Communication in an embodied and situated settings was studied
by Mordatch and Abbeel (2017). Their environment is a 2d continuous space populated by
agents and colored landmarks; agent learn to communicate to each other about actions that
they must undertake (e.g. go to) and object that actions must target (e.g. blue), developing a
communication protocol with compositional verb–noun structure. The ability of the agent to
move freely contrasts with dominant settings with predefined roles of a sender and a receiver,
where the sender passively observes a stimulus x (independently of any actions it can undertake)
and the receiver is waiting for a message to undertake an action. This enabled non-verbal
communication (the transfer of valuable information outside of a predefined communication
channel), e.g. by gaze direction or physical movement. Moreover, according to Mordatch and
Abbeel, “physical environment considerations play a part in the syntactic structure. The action
type verb GOTO is uttered first because actions take time to accomplish in the grounded
environment. When the agent receives GOTO symbol it starts moving toward the centroid of
all the landmarks (to be equidistant from all of them) and then moves towards the specific
landmark when it receives its color identity” (Mordatch and Abbeel, 2017).

Situatedness was also shown to have a positive influence on compositional generalization.
Hill et al. (2019) demonstrate that (i) egocentric perspective (as opposed to third-person view),
(ii) 3d simulated environments (as opposed to 2d grid worlds) and (iii) active perception (as
opposed to perceiving the stimuli statically) incentivize the agent to factorise experience and
behaviors into reusable chunks, leading to better compositional generalization as shown in
experiments isolating factors (i)-(iii). These results provide explanation of previous results,
showing low systematic generalization in recurrent neural networks trained on symbolically
encoded stimuli from a single modality (Lake and Baroni, 2017). The authors hypothesize
that this effect arises because richer experience is a form of implicit data augmentation, which
“suggests that the human capacity to exploit the compositionality of the world, when learning
to generalize in systematic ways, might be replicated in artificial neural networks if those
networks are afforded access to a rich, interactive, multimodal stream of stimuli that better
matches the experience of an embodied human learner” (Hill et al., 2019).

Motivation for the presented approach The problem addressed in this thesis is to
propose and evaluate an alternative, novel approach to the emergence of compositional
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communication. Following the literature, we will pose the problem as a naming game — a
variation of a guessing game, where the sender sees an object with two independent factors
of variation (shape and color) and the receiver must, independently, indicate both of these
factors. While this treatment of compositionality is simplistic and amounts to what Steinert-
Threlkeld (forthcoming) calls generalized conjunction or trivial compositionality, even trivially
compositional communication protocols remain difficult to learn (as seen in previous paragraphs)
and provide a minimal model of the phenomenon. The objects will be presented to the sender as
raw pixel data, which is motivated by (relative) biological plausibility of this setting. There will
be a pre-defined communication channel: a set of fixed set of fixed-length messages composed
from symbols from a fixed vocabulary. There will be an implicit temporal dimensions in
the model as the sender produces the messages symbol-by-symbol and the receiver receives
them symbol-by-symbols. Both agents will be implemented as recurrent neural networks
with time-steps corresponding to subsequent symbols. The implementations details of the
experimental setup are presented in the next chapter.

The aim is to explore solutions to the object naming game based not on injecting inductive
biases into the architecture of the agents, but leveraging constraints established by the history
of previous interactions in a game-theoretically principled manner. More specifically, I will
investigate whether template transfer (as described in section 2.1) can be employed as a way
of achieving compositional communication in an object naming game.
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Chapter 4

Method

The goal of this chapter is to describe the experimental setup in more detail, derive the specific
loss function used in experiments and present the template transfer approach — the main
contribution of the thesis.

4.1. Experimental setup

4.1.1. Dataset

We conduct our experiments on a dataset consisting of 2500 images of colored three-dimensional
objects. Each image has dimensions of 128× 128× 3 pixels. The dataset includes images of
five shapes (box, sphere, cylinder, torus, ellipsoid) and five colors (blue, cyan, gray, green,
magenta). One hundred images generated using POV-Ray ray tracing engine,1 differing in
the position of the object on a surface, are included for each color–shape pair. An analogous
dataset was previously used by Lazaridou et al. (2018), Choi et al. (2018) and Bogin et al.
(2018). We choose pairs for the test set by taking one of each figure and color, i.e. the test
set is composed of blue boxes, cyan spheres, gray cylinders, green tori and magenta ellipsoids.
Example images from the training set are shown on figure 4.1.

4.1.2. Object naming game

Object naming games are Lewis signaling games, which extend the guessing game framework
(as described in section 2.1) to a setting where the loss function L can be decomposed into
a sum of two loss functions L1 and L2. In the object naming game used in the experiments,
two agents, a sender and a receiver, learn to communicate about colored geometric objects.
The sender observes an object (an RGB image) and sends a message (a sequence of discrete
symbols) to the receiver; the receiver must correctly indicate both the color and the shape of
the object. Formally, the game is stated as maximization of the following log likelihood:

L(θ, ψ) := Ex,yc,ys∼D Em∼sθ(·|x)[− log rψ(yc, ys|m)], (4.1)

where sθ is the policy of the sender (i.e. sθ(m|x) is the probability of sending message m
when observing image x), rψ is the policy of the receiver (i.e. rψ(yc, ys|m) is the probability of
taking actions yc, ys after receiving message m). D is the dataset, and a sample of the dataset
consists of the following: x, an RGB representation of the object, and labels yc and ys for the
color and shape of the objects. Parameters θ and ψ are learnable parameters of the polices.
For more details, see Algorithm 1 and Figure 4.2.

1The dataset was generated using code available from https://github.com/benbogin/obverter.
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Figure 4.1: Examples of images from the training dataset.

Algorithm 1 Training loop for the object naming game
1: Initialize sender sθ, receiver rψ, and training set D
2: for x, yc, ys ∈ D do
3: m ∼ sθ(x)
4: ŷc, ŷs = rψ(m)
5: L = -log_likelihood(yc, ŷc) - log_likelihood(ys, ŷs)
6: optimize(L(θ, ψ))

4.1.3. Derivation of the loss function for the object naming game

For completeness, let us derive (4.1) as a maximum likelihood estimator of a solution to object
naming game given the topology of the graphical model embodied by the sender–receiver
pair mediated by a discrete latent variable (the message). Let us assume that we are given a
dataset

D =
{
(x(i), y(i)c , y(i)s )

}n
i=1

, (4.2)

where entries are independent and identically distributed, x(i) is an object (encoded as an
RGB image) and y(i)c , y(i)s are (ground truth) labels for x(i) (encoded as one-hot vectors). Let
us further assume that each object comes from a distribution (X ,Ys,Yc,M), where Ys and
Yc are two labels for image X and M is a latent variable. The goal of a naming game is
minimizing the negative log likelihood of ground truth labels given the image

E(x,xc,xs)∼D[− log p(yc, ys|x)]. (4.3)
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Figure 4.2: Object naming game

Assuming that (Yc,Ys) and X are conditionally independent givenM, i.e. p(ys, yc|x,m) =
p(ys, yc|m), we have

log p(yc, ys|x) = log
∑
m

p(yc, ys|m)p(m|x) ≥ Em∼p(·|x)[log p(yc, ys|m)] (4.4)

where the last inequality follows from Jensen’s inequality. We will be optimizing the lower
bound; hence, our surrogate loss function is

E(x,yc,ys)∼D Em∼p(·|x)[− log p(yc, ys|m)]. (4.5)

By substitution of the first and second probability mass function with sender’s policy sθ and
receiver’s policy rψ, respectively, we obtain (4.1).

4.1.4. Reparametrization of the loss function for the object naming game

In our experiment we will leverage gradient descent optimization to jointly train the sender
and the receiver to minimize ∇θ,ψL. One problem for (4.1) as a loss function is that it is not
differentiable with respect to θ due to non-differntiable sampling from the expectation Em∼sθ(·|x).
Moreover, m over which the expectation is taken is discrete, which is a crucial assumption from
a linguistic point of view. This prevents direct use of reperametrization (Kingma and Welling,
2013) – moving θ from the distribution to inside the expectation or vice versa – because
a probability mass function of a categorical distribution is not reparametrizible (Schulman
et al., 2015). Instead, we will estimate the true gradient ∇θEm∼sθ(·|x)[− log rψ(yc, ys|m)] by
first relaxing the categorical distribution p(M|X ) and, subsequently, by reparametrizing its
probability density function.

Let us assume that the policy of the sender sθ encodes a categorical distribution over n
symbols {v1, v2, . . . vn} that form a message m = (v′, v′′) for v′, v′′ ∈ V . At each time-step,
the RNN (parametrized by θ) predicts the probabilities p1, p2, . . . pn for generating a symbols
v1, v2, . . . , vn. Instead of sampling vi (represented as a one-hot vector) directly from this
distribution, we obtain a sample from the corresponding Gumbel-softmax (Jang et al., 2016;
Maddison et al., 2016) distribution given by

vi =
exp((log pi + gi)/τ)∑n
j exp((log pj + gj)/τ)

(4.6)

where τ is a temperature parameter controlling the degree of relaxation and gk (for k ≤ n) are
samples from a standard Gumbel distribution, i.e. gk = − log(− log(u)), where u is a sample
from the uniform distribution from 0 to 1.
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Then, the relaxed representation of the sample has the form of

v̂ =
[
v1, . . . , vn

]
. (4.7)

Gumbel-softmax samples approximate one-hot samples from the categorical distribution given
by parameters p1, p2, . . . pn. By plugging in m = (v̂′, v̂′′), this allows us to rewrite (4.1) to the
form

L(θ, ψ) := Ex,yc,ys∼D Eu∼U(0,1)[− log rψ(yc, ys|sθ(x, u))]. (4.8)

Crucially, sθ is now a deterministic function of of the object x and a random sample u from
the uniform distribution U(0, 1), which makes L differentiable with respect to θ.

4.1.5. Architecture of the agents

General setup Both the sender and the receiver are implemented as recurrent neural
networks. The sender is equipped with a pre-trained convolutional neural network to process
visual input. After observing the object, the sender generates a sequence of T discrete messages
sampled from a closed vocabulary of 10 symbols.

All experiments reported in this thesis are implemented using PyTorch (Paszke et al., 2017)
and EGG (Kharitonov et al., 2019). The code is publicly available.2

Vision module We pre-train a simple convolutional neural network on the training subset
of our datatset to predict colors and shapes. The network is composed of two layers of filters
(20 and 50 filters with kernel size 5x5 and stride 1), each followed by a ReLU (rectified linear
unit) activation and max pooling. The output of convolutional layers is then projected into a
25-dimensional image embedding using a fully-connected layer. During pre-training, the image
embedding is passed to two linear classifiers (for color and shape) and the whole vision module
is optimized with negative log likelihood as a cost function.

Sender During naming games, the vision module is kept frozen (i.e. it is not updated during
training). The sender generates its messages using a single-layer recurrent neural network
(RNN) with a hidden state size of 200. The 25-dimensional image embedding for each image is
projected to 200 dimensions to initialize the hidden state of the RNN. Let T be a fixed length
of the message. Then, at each time-step t < T , the output of the RNN is used to parameterize
a Gumbel-Softmax distribution (together with a temperature τ that is a trainable parameter
as well). A symbol is sampled from this distribution at each time-step t. After reaching T ,
the RNN halts and the generated symbols are concatenated to form a message, which is then
passed to the receiver.

Receiver The receiver processes a message symbol-by-symbol using a single-layer recurrent
neural network with a hidden state size of 200. After processing the entire sequence, the last
output is passed to a two-layer neural network classifier with two softmax outputs for color
and shape.

Training hyperparameters All models are optimized using Adam (Kingma and Ba, 2014).
The batch size is always 32. During the object naming game, the sender is trained with
learning rate 10−5 and receiver with learning rate 10−5.

2The code was released on GitHub under
https://github.com/tomekkorbak/compositional-communication-via-template-transfer.
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4.2. Template transfer approach

The template transfer approach boils down to pre-training the receiver on two simpler guessing
games: a color naming game and a shape naming game. These games are disentangled in the
sense that their tasks are to correctly indicate one aspect of the object (color or shape), as
formalized by the following loss functions:

L1(θ1, ψ) := E(x,yc)∼D Em∼sθ1 (·|x)[− log rψ(yc|m)], (4.9)

L2(θ2, ψ) := E(x,ys)∼D Em∼sθ2 (·|x)[− log rψ(ys|m)], (4.10)

where rθ(yc|m) is the marginalization of rθ(yc, ys|m), viz. rθ(yc|m) :=
∑

ys
rθ(xc, xs|m).

Analogously, one can define rθ(ys|m) :=
∑

yc
rθ(xc, xs|m). Crucially, as far as Yc is conditionally

independent from Ys given X, we have

L(θ, ψ) = L1(θ, ψ) + L2(θ, ψ). (4.11)

The loss functions L1 and L2 are optimized simultaneously (crucially with the shared
parameters ψ of the receiver) until a desired level of accuracy is met. Then, the second phase
follows, in which the receiver is passed (via template transfer) to the object naming game (as
described in the previous paragraph) with a new sender.

During the pre-training phase of template transfer, both sender and receiver, as well
as the vision classifier, are trained with learning rate 10−3. Message length T = 1 for each
receiver. To prevent distribution shift with respect to message length between games, a random
uniformly sampled symbol is prepended to s1’s messages and appended to s2’s messages. After,
pre-training, during the object naming game, T = 2 and the learning rate of the transferred
receiver is decreased to 10−5. See Figure 4.3 and Algorithm 2 for more details.

Figure 4.3: Template transfer consists of pre-training the receiver rψ on two games with
disentangled losses L1 and L2 and transferring rψ to a new object naming game.

The communication protocol acquired in the first phase serves as a training bias in the
second phase. Informally, the new sender learns to emulate messages sent by the two specialized
senders of the previous phase. Our experiments reported in chapter 5 indicate that two-phase
learning is a sufficient incentive for compositionality to emerge.

The presented approach instantiates both template transfer and modular composition as
described in section 2.1. To simplify the notation, let us assume for a moment that sθ and
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Algorithm 2 Template transfer approach
1: Initialize senders sθ1 , sθ2 , sθ, receiver rψ, and training set D
2: for x, xc, xs ∈ D do
3: m1 ∼ sθ1(x) . Color naming game
4: m′ ∼ vocabulary
5: x̂c, x̂s = rψ([m1,m

′])
6: L1 = -log_likelihood(xc, x̂c)
7: m2 ∼ sθ2(x) . Shape naming game
8: m′′ ∼ vocabulary
9: x̂c, x̂s = rψ([m

′′,m2])
10: L2 = -log_likelihood(xs, x̂s)
11: optimize((L1(θ1, ψ) + L2(θ2, ψ)))
12: for x, xc, xs ∈ X do
13: m ∼ sθ(x) . Object naming game
14: x̂c, x̂s = rψ(m)
15: L = -log_likelihood(xc, x̂c) - log_likelihood(xs, x̂s)
16: optimize(L(θ, ψ))

rψ are deterministic functions sθ(x) := argmaxm sθ(m|x) and rψ(m) := argmaxy rψ(y|m) (as
is the case during evaluation). The fact that pre-training involves both the color naming
game and the shape naming game can be seen as a modular composition of these games with
a game ga aggregating the predictions of the receiver as it communicates with each sender:
ga(rψ(sθ1(x)), rψ(sθ2(x))) such that the loss for ga is L1 + L2. The presented approach also
instantiates template transfer from the composite game ga to the object naming game. In the
latter game, the new sender sθ takes advantage of the biases in the receiver rψ due to playing
the composite game. The significance of these interpretations in further discussed in chapter 6.
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Chapter 5

Experiments and results

In this chapter, I attempt to measure how much does the template transfer approach influence
the degree of compositionality of a communication protocol as compared to three baseline
approaches (random agents, the same architecture without pre-training and the obverter
approach). The compositionality is measured using three metrics: test accuracy, context
independence and topographical similarity, which will be described in the first section. Finally,
I also try to provide an attempt at explaining how template transfer affect the biases learned
by the receiver by visualizing the activations of the RNN implementing the receiver. It turns
out that template transfer causes the receiver to learn disentangled representations of color
and shape.

5.1. Measuring compositionality

We utilize three metrics of compositionality of a communication protocol: zero-shot generaliza-
tion accuracy, context independence and topographical similarity. High zero-shot generalization
indicates that the agents correctly map the implicit compositional structure of inputs to
explicate one of the outputs. The other two metrics focus directly on the transmitted messages,
comparing them to the ground truth, fully disentangled (color, shape) representation.

During evaluation we use the deterministic sender given by s(x) := argmaxm sθ(m|x),
where x is an object.

Test set accuracy We quantify zero-shot generalization by measuring the accuracy of
the agents on a test set obtained by a compositional split of the dataset: the test set only
containing pairs of shapes and colors not present in the training set, but each color and shape
individually is present in the training set. Test set accuracy therefore measures the ability to
generalize to unseen combinations of seen elements.

Contextual independence Context independence was introduced by Bogin et al. (2018)
as a measure of alignment between the symbols in an agent’s messages and the concepts
transmitted. We denote by V the set of symbols used to compose messages and by K the
set of concepts, which in our case is the union of available colors and shapes. Given sender
s, and assuming a uniform distribution of objects, we define p(v|k) as the probability that
symbol v ∈ V appears when the sender observes an object with property k ∈ K. We define
p(k|v) in the same manner. Further, let vk := argmaxv p(k|v). The context independence
metric is defined as E(p(vk|k) · p(k|vk)); the expectation is taken with respect to the uniform
distribution on K.
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Intuitively, context independence measures the consistency associating symbols with shapes
irrespective of color (and vice versa). It is sometimes considered restrictive, as it effectively
punishes for using synonyms (Lowe et al., 2019).

Topographical similarity Finally, we introduce topographical similarity (Brighton and
Kirby, 2006; Lazaridou et al., 2018), also known as representational similarity (Kriegeskorte,
2008; Bouchacourt and Baroni, 2018), a measure of structural similarity between messages
and disentangled target labels yc, ys. To define topographical similarity more formally, let
us denote the random variable Lt := L((y1c , y

1
s), (y

2
c , y

2
s)), where L is the Levenshtein (1966)

distance and y1c , y1s and y2c , y1s are ground truth labels for independently objects x(1), x(2) with
the subscripts denoting their shapes and colors. Note that in our case Lt ∈ {0, 1, 2}. Let
Lm := L(s(x1), s(x2)) be the distance between messages sent by the sender after observing x1

and x2. Topographical similarity is the the Spearman ρ correlation of Lt and Lm.
Topographical similarity is theoretically principled because an analogous metric is used

in computational neuroscience to measure, for instance, the structural similarity between a
stimuli and a neural activity evoked by the stimuli (Kriegeskorte, 2008). Moreover, being a
second-order relation between the messages and ground truth labels, topographical similarity
mirrors the idea of Deacon (1998) about symbolic reference being a second-order relation
between indexical signs.

5.2. Baselines

To establish sensible lower bounds on all three described metrics, we measure the performance
of three baseline models.

Random baseline Random baseline is simply the performance of untrained agents.

Same architecture The most direct comparison of the effect of template transfer is simply
not applying template transfer, i.e. not pretraining the sender on color naming game and
shape naming game and only training the agents on the object naming game.

Obverter baseline In the obverter algorithm, two agents exchange the roles of the sender
and the receiver. If an agent is the receiver, it behaves as in the object naming game. If an
agent is the sender, it sends message that would have produced the most accurate prediction
of color and shape, if it had received such a message as a receiver (i.e. instead of the greedy
decoding used in the original implementation of Batali (1998), we simply choose the message
maximizing accuracy). Accuracy is evaluated against the predictions of the visual classifier.
The receiver is trained with learning rate 10−5. For details, consult Algorithm 3.

5.3. Results

We compared our approach with several baselines (random, the same architecture without
pre-training games, and our implementation of the obverter approach) on games with five
shapes and five colors. Topographical similarity and context independence were computed
on the full dataset (train and test); the results are presented in Table 5.1. Template transfer
clearly leads to highly compositional communication protocols. While all methods struggled
to generalize to unseen objects, template transfer was the most successful. For examples
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Algorithm 3 Obverter
1: Initialize agents a1, a2, visual module v, training set D
2: Initialize the set M of all possible messages m
3: for x, xc, xs ∈ D do
4: sθ, rψ ∼ {a1, a2} . Randomly assigning the roles of sender and receiver
5: m = argminm∈M evaluate_message(sθ, m)
6: ŷc, ŷs = rψ(m)
7: L = - log_likelihood(xc, x̂c) - log_likelihood(xs, x̂s)
8: optimize(L(ψ))
9: procedure evaluate_message(model, m)
10: xc, xs = v(x) . Using visual classifier predictions as a proxy for ground truth labels
11: x̂c, x̂s = model(m)
12: L′ = - log_likelihood(xc, x̂c) - log_likelihood(xs, x̂s)
13: return L′

of communication protocols representative of the experiments conducted, see Table 5.2 and
Figure 5.1.

Table 5.1: The effect of template transfer on compositionality. The metrics are train and test
set accuracies (the rate of correctly predicted both yc and ys); average over the individual
accuracies for yc and ys; and context independence (CI) and topographical similarity (Topo).
The models are random baseline (untrained agents); baseline architecture (without template
transfer); template transfer (TT); and obverter algorithm. All reported metrics are averaged
over ten random seeds and standard deviations are reported in brackets.

Accuracy

Model Train (both) Test (both) Test (avg) CI Topo

Random 0.04 0.04 0.2 0.04 (± 0.01) 0.13 (± 0.03)
Baseline 0.99 (± 0.01) 0.02 (± 0.05) 0.47 (± 0.09) 0.08 (± 0.01) 0.30 (± 0.05)
Obverter 0.99 (± 0) 0.24 (± 0.23) 0.51 (± 0.19) 0.12 (± 0.02) 0.55 (± 0.13)
TT (ours) 1 (± 0) 0.48 (± 0.10) 0.74 (± 0.06) 0.18 (± 0.01) 0.85 (± 0.03)

5.4. Visualizing receiver’s activations

Recall that the receiver rψ consists of an RNN that reads the message symbol-by-symbol
and a two-layer neural network classifier with two softmax heads: one for color and one for
shape. The last hidden state of the RNN serves an input to the two-layer neural network
classifier. To get a better sense of how the receiver understands the messages it receives, we
visualized the hidden states hm corresponding to each message m send by the sender after
receiving each object x, sampling one object for each color–shape pair. Then we applied
principal component analysis, computed a projection projp1,p2hm of each hidden state onto
two principal components p1 and p2.1 The scatter plots visualizing the RNN hidden states for
the baseline architecture and template transfer are shown on Figure 5.2.

1It is common in the literature to use PCA as a method for visualizing hidden states of RNNs, see also
Yamashita and Tani (2008)
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Table 5.2: Two example communication protocols, one that emerged via the baseline architec-
ture (5.2a), and one via template transfer (5.2a). Gray cells indicate objects not seen during
training. In (5.2b), symbols exhibit clear association with colors and shapes, e.g. symbol 8 is
consistently associated with the color magenta (when on first position) and boxes (when on
second position).

(a) A non-compositional communication protocol
(topographical similarity 0.25)

box sphere cylinder torus ellipsoid
blue 1 0 4 5 1 0 4 5 5 0
cyan 9 0 4 0 3 0 4 0 7 0
gray 3 5 6 5 3 2 6 5 5 3
green 0 0 7 6 3 0 6 0 7 6

magenta 1 5 5 5 1 2 1 5 5 2

(b) A highly compositional communication protocol
(topographical similarity 0.85)

box sphere cylinder torus ellipsoid
blue 1 8 1 9 1 5 1 6 1 4
cyan 4 8 4 9 4 5 4 6 4 4
gray 6 8 6 9 6 5 6 6 6 9
green 9 8 9 9 9 5 9 6 9 4

magenta 8 8 8 9 8 5 8 8 8 4

While without template transfer there is no clear structure in the space, the RNN of the
receiver trained with template transfer exhibits clear structure: color and shape are linearly
separable and spanned by the two principal components of the representation space. One can
observe that representations learned by the receiver are disentangled in the sense that the
features within the representation correspond to the underlying causes of the observed data,
with separate features corresponding to different causes (Goodfellow et al., 2016). The causes in
our case are color and shape. Since disentanglement can be seen as a representational correlate
of compositionality, it provides further evidence that the semantics agents use to produce
and comprehend messages is indeed compositional (i.e. there is semantic compositionality in
addition to syntactic compositionality).
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(a) A non-compositional communication protocol (topographical simi-
larity 0.25)

(b) A highly compositional communication protocol (topographical simi-
larity 0.85)

Figure 5.1: Communication protocols in the object naming game admit an information-
theoretic interpretation as prefix code, which can be visualized as a tree. Here we visualize the
trees corresponding to a non-compositional protocol and a high-compositional protocol. Note
that compositionality – which can be seen as a kind of symmetry in the protocol – is depicted
by radial symmetry of the corresponding tree.
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(a) No template transfer

(b) Template transfer

(c) Legend

Figure 5.2: Receiver RNN’s hidden states corresponding for each object type plotted on a 2d
plane.
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Chapter 6

Discussion

In this chapter, I discuss the implications of the presented approach, focusing on the following
points: (i) how compositionality can be understood game-theoretically, (ii) how the results
corroborate Deacon account of reference, (iii) that compositionality may be less cognitively
demanding that previously thought, and (iv) that the presented approach is developmentally
plausible to a an extent.

Evolutionary game-theoretic interpretation The presented approach instantiates both
template transfer (from the pre-training games to the object naming game) and modular
composition (of the color naming game and the shape naming game) as described in section
2.1. The subsequent discussion focused on template transfer as a mechanism for reusing skills
across contexts and scaffolding compositional communication protocols with simpler protocols.
The exploitation of modular composition, however, also offers a theoretical insight. There
is an interesting analogy between symbolic composition, an operation over symbols yielding
composite symbols (compare with f in section 2.3), and modular composition, an operation
over games yielding composite games. The assumption central to the presented approach is
that a game (such as the object naming game) can be reformulated as a modular composition
of two simpler games: ga(rψ(sθ1(x)), rψ(sθ2(x))) with a game ga being a function aggregating
the predictions of color and shapes and sender and receiver assumed to be deterministic for
notational convenience. Under this formulation, we can have specialized senders sθ1 and sθ2
for the pre-training games. Therefore, decomposing a game — and enabling the agent to
specialize in sub-games — is sufficient for compositionality to emerge. From an evolutionary
point of view, one can conjecture that compositional communication it itself a composition of
distinct communication skills and as such it follows a more basic kind of compositionality –
composing simple skills to give rise to complex behavior.

Semiotic interpretation The presented approach solves the problem of developing com-
positional communication protocol from raw pixel input by decomposing the problem into
several simpler problems. These simpler problems are: (1) learning a visual classifier, (2)
learning non-compositional communication protocols in simple games, and finally (3) learning
a compositional communication protocol. This maps into the hierarchy different forms of
reference similar to the one described in section 2.2: (1) iconic reference, (2) indexical reference
and (3) complex indexical reference1 (Peirce, 1998; Deacon, 1998). The results corroborate the

1I deliberately refrain from using the term “symbolic reference” because the communication protocols learned
by the agents in presented experiments are not non-controversially symbolic in the sense of Deacon as they
lack rich symbol-to-symbol relationships.
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Peircean conjecture that compositional communication is preceded (both evolutionarily and
developmentally) by progressively augmented iconic and indexical communication protocols.
It also illustrates how to idea of simpler forms of reference used as a scaffolding for complex
forms of reference can be formalized in terms Lewis signaling games by appealing to modular
composition and template transfer. More specifically, both the color naming game and the
shape naming game considered separately instantiate simple indexical communication between
sθ1 and rψ and between sθ2 and rψ. Additionally, the pre-training game (composed of the color
naming game and the shape naming game) constrains the receiver to interpret the messages of
both sθ1 and sθ2 compositionally. It is this inductive bias — the receiver playing the role of a
compositional interpretant (in Peirce’s sense) — that further constrains the new sender sθ to
communicate compositionally.

Cognitive interpretation Some of the existing methods of inducing compositionality (e.g.
the obverter approach) focus on imposing strong inductive biases on the architecture of the
agents (cf. chapter 3). For instance, the obverter approach is based on the assumption that an
agent can use its own responses to messages to predict other agent’s responses and thus can
iteratively compose its messages to maximize the probability of desired response (according to
the self-model). Therefore, it makes strong assumptions about the agents and task: to be able
to use themselves as models of others, the agents must share an identical architecture and the
task must be symmetric (the agent must be able to exchange their roles). This excludes games
with functional specialization of agents. Template transfer is a model-free technique that
makes one assumption: that the loss function can be decomposed into two disentangled loss
functions (as in the case of decomposing L into L1 and L2 in (4.9)-(4.10). (Note that there is
no need for the input to be disentangled.) The fact that template transfer can outperform the
obverter approach on all compositionality metrics lends support to the claim that the cognitive
requirements for developing a compositional communication protocol are quite modest.

One may argue that template transfer offloads some of the cognitive complexity of learning
a compositional communication protocol to the interaction history, supporting a distributed
view of language as an activity happening in a social world that evolves outside of individual
speakers Cowley (2011). According to the distributed view of language, a speaker might be
constrained by multiple interactions antecedent to the speaker coming to being. The usefulness
of this view is more evident when thinking about the compositional communication protocol
that the receiver learns in the pre-training game as instantiating a replicable constraint in the
sense of (Rączaszek-Leonardi, 2012). Assuming this picture, language is an activity harnessed
by constraints that are physical structures, selected due to having a history of harnessing
dynamics in a useful way and transmitted between settings. Importantly, the emergence
and transmission usually happen on a slower timescale than the actual constraining. In
the conducted experiments, the compositional communication protocol was learned in the
pre-training phase as a useful way of harnessing the communication dynamics. Due to its
usefulness, it persisted in receiver’s weights, which allowed it to replicate to the object naming
game, constraining a new sender via receiver’s expectations. In effect, the new sender sθ
took advantage of the solution to the coordination problem developed jointly by sθ1, sθ2, and
inherited it implicitly, never interacting with sθ1 and sθ2. It is in this sense that the problem of
learning to communicate compositionally can be solved much more easily by agents embedded
in a rich, social world.

Developmental interpretation While solving the problem of developing compositional
communication protocol from raw pixel input and learning compositional communication from

38



scratch in an end-to-end manner Lazaridou et al. (2018); Choi et al. (2018) is of theoretical
interest, it significantly differs from how human children learn compositional aspects of
language. Children learn communicative functions of utterances in a rich and highly structured
environment (child-directed speech exhibits repetitive patterns and is augmented with pointing,
gazing or other means of attention shifting) and through simple language games that lack many
features of adult language (Stern, 1974; Bruner, 1983; Nomikou et al., 2017; Rączaszek-Leonardi
et al., 2018). The template transfer approach is developmentally inspired as it acknowledges
both the piecemeal (children learn words holistically before learning complex syntactical
constructions) and the socially embedded (the role of child-directed speech) character of
language development.
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Chapter 7

Conclusions

The goal of the thesis was to present a novel approach to developing emergent compositional
communication based on the idea of template transfer (Barrett and Skyrms, 2017) implemented
by sharing agents across games. Template transfer was used to model a variety of semiotic,
social and cognitive phenomena (Barrett et al., 2019, 2018) and can probably be extended to
new, more challenging problems in multi-agent systems research.

The presented thesis is limited by the simplicity of the task and the static nature of the
environment. The communication channel is constrained by predefined vocabulary size (10)
and message length (2), and further by partitioning the channel in the pre-training game into
single-symbol subchannels for sender sθ1 and sθ2 . Moreover, there are only two effective degrees
of freedom in the world (color and shape), agents are assigned with specific roles and they
agent do not control which object they are being presented with. Future work might focus on
extending the template transfer approach to more realistic, interactive 3d environments with
messages of arbitrary length, where more complex (e.g. recursively nested) compositionality
could emerge. A richer structure of the environment and the task could also lead to the
emergence of symbolic reference (Deacon, 1998) with the meanings of messages being deeply
interconnected.
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